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Millimeter-Wave Performance of Shielded
Slot-Lines

ABDEL-MONIEM A. EL-SHERBINY, MEMBER, IEEE

Abstract —The high frequency characteristics of shielded slot-lines are

irwestigated using a modified Wiener-Hopf technique. The analysis in-

cludes the case of uniaxially anisotropic substrates when the principal axis

is directed normal to the substrate. The obtained solution is especially

useful at higher frequencies where other methods tend to be less effective.

Numerical results are given for lines on high dielectric constant substrates

over the full nsable frequency range. It is shown that lines can be used as

transmission elements up to a certain limiting frequency beyond whlcb they

will radiate. Physical aspects of the propagation in slot-lines are discussed

and the effect of the shields on the properties of the guided modes is

explained.

I. INTRODUCTION

SLOT-LINES are attracting increasing interest as a

transmission element in integrated circuits at higher

microwave and millimeter-wave frequencies. Since their

introduction by Cohn and others [1], [2], they have been

investigated by a number of authors. At lower microwave

frequencies, slot-lines were not much used because of the

Manuscript received August 19, 198 1; revised December 4, 1981.
The author is with Spectra Research Systems, 1811 Quail St., Newporl

Beach, CA 92660.

availability of other efficient and easy-to-calculate trans-

mission lines. At higher frequencies, however, as microstrip

lines and waveguides become inadequate for some applica-

tions and alternatives are searched, the slot-line becomes a

promising element in many respects. The waveguide-housed

counterparts, unilateral fin-lines, have been successfully

used for many millimeter-wave applications. The slot-line

as an open structure was felt to be susceptible to excessive

radiation at the discontinuities and to cross-coupling. At

higher frequencies, shielded slot-lines may be as efficient as

fin-lines and are much easier to integrate. One of the

important factors interfering with the application of slot-

lines is the lack of data on its performance at higher

frequencies. Being inherently non-TEM line, it is much

more difficult to calculate, compared to microstrip lines or

fin-lines. The latter are frequently treated as ridged rectan-

gular waveguides.
The results of [ 1], [2] are based on waveguide iris imped-

ance concepts and are sufficiently accurate for narrow

slot-lines. Various approaches were suggested for the full-

wave treatment of these lines and a fair amount of data is

now available [2]–[6]. However, the basic features of prop-
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agation in these lines, as well as their high-frequency

limitations,. do not seem to be fully clarified yet. Moreover,

slot-lines on anisotropic substrates were not considered in

any detail in literature. Slot-lines on anisotropic substrates

have potential application as millimeter-wave transmission

media and in integrated optics.

The following analysis of shielded slot-lines ii based on

the functional equations approach which was applied to

bilateral fin-lines and to microstrip lines on anisotropic

substrates [7], [8]. The main advantage of the method is its

superior numerical efficiency, especially at high frequen-

cies, and the physically identifiable quantities appearing in

the expressions for fields and currents, allowing a deeper

insight into the physics of the problem.

II. FORMULATION OF THE PROBLEM

The configuration of the shielded slot-line under consid-

eration is shown on Fig. 1. The slot-line with gap-width W,

and semi-infinite thin conductors lies in the plane z = O

over a dielectric substrate which is assumed to be, in

general, uniaxially anisotropic with the principal axis in the

direction of z perpendicular to the plane of the substrate.

The thickness of the substrate is taken to be 2d and the

upper shield is located at a distance dl from the plane of

the line, while the lower shield is at distance dz from the

lower side of the substrate. The cartesian axes x, y, and z

are located as shown. Shields and slot-line are assumed to

be perfect conductors. The tensor permittivity of the sub-

strate material is written

[1

&too

;=&O O Et O

OOez

and the magnetic permeability is POP,. &Oand PO are the

permittivity and permeability of free space, respectively.

The dependence of the fields and currents on the time t

and the longitudinal coordinate y is given by e–’t~~–y~),

where u is the angular frequency and y is a real propaga-

tion constant. Fields and currents will, be represented

through their Fourier transforms

f(x, z) =/”+mf(a,z)e-’a’da
—m

where ~ is any of the field or current components, ~ is its

Fourier transform, and a is a complex parameter. Field

components can be represented through ~z and HZ in the

dielectric regions I, II, and III

i i3E:
-7

— (IEY+ yq~- az —

—apop,Hz = y-ix + ~Ey (1)

ati
“- = — ~Hx +YHJ
z az

(JEOEZE,= yHx + (xHy. (2)

If the functions ~, and ~z are known, all other field

components can be determined from (1) and (2). Functions
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Fig. 1. Shielded slot-hne configuration

i, and Hz satisfy the one dimensional wave equations

[ 1~-(a2+y2 -k&,) fiZ=O (3)

where

~2=et/eZ k;= U’eopo.

A. Boundary Conditions

Continuity relations for the electric and magnetic fields

on the interfaces between different media together with

relations (1) and (2) lead to the following boundary condi-

tions for ~z and fiz and their derivatives.

1) On the shields l?X = ~Y = O; therefore

~]z=.,=~]z=-z
tiZ(a, dl)=fiZ(a, -2d-d, )=(). (4)

2) On the interfaces z = O and z = – 2d, the tangential

components of the electric field are continuous. For fiz and

Hz we have

~ 1 _1afi:

az – ~ az~=+o -12=—0
1 aEz 1 _a~z

—
~’ az az-1 (5)

~=–’~+o ~=–’~–()

3) On the interface z = – 2d, HX and HY are continuous,

i.e.,

a~,-1 afiz—-1az .=_2~+o– az .=-2~-o
(7)

&ziz(cr —2d+O). =@a, -2 d-0). (8)

4) Due to the presence of surface currents, ~(a) and

~Y(a) flowing on the slot-line conductors, fields H. and HY

are discontinuous and so are e,, ~,, and i3HZ/ az on the

plane z = O. This leads to the following boundary condi-



752 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30. NO. 5, MAY 1982

tions on the plane of the conductors:

@&o[32(a, +o)–&ziz(a, –o)]

= – ajx(a)– y~y(a)

=U,-i{%]==+o-%lz=.j
= y’ix(a)+ a;,(a) = u~ (9)

where Ul and Uz are introduced as linear combinations of

~X and ~Y in the Fourier transform domain.

Expressions for ~Z(a, z) and ~Z(a, z) in regions I, II,

and III taking into account boundary conditions (4), (5),

(6), and (7) can be written as follows.

Region I:

cosh RO(dl – Z)
E((x, z)= –A R sinh R ~

o 01

E,(a, z)=l?

sinh Ro(dl – z)

sinh Rodl “

Region II:

~z(a, 2) = ‘cKRc:;h;;z d
+ KA cosh Rz(2d + Z)

~ z Rzsinh2RZd

D sinh Rlz
ll,(a, z)= –—

+ ~ sinh R,(2d+z)

p, sinh2R,d p, sinh2R,d “

Region III:

E=(a, z)=c
cosh Ro(2d+d2+z)

Rosinh Rodz

lZ,(a, z)=D
sinh Ro(2d + dz + z)

sinh Rodz “

A, B, C, D are some function of the parameter a

RZ =~a2 + y2 – k~p,tz

R,= a2+y2–k;p,e, .

Applying conditions (8), we obtain the following relations

between A and B and C and D:

( )
D Rocoth Rod2 + ; coth2R,d = %

lB

P, sinh2Rtd

(coth Rod2 coth2RZd,

).
C R +e, R =~sinh:Rd A

o z ze

where

e,=~ d,=dtc.

Finally, application of (9) and using the relations between

A, B, C, and D gives A and B in terms of Ul and U2

–wpoAx1(a)=U1(a)

iBX2(a) = U2(a) (lo)

where

coth Rodl coth2RZde

(

&e

)

2

xl(~)= R. ‘&’ R= – RZsinh2RZd,

1

coth Rod2 coth2RZd,

R.
-l-t, R

~

2

xz(a) = Rocoth Rodl + :coth2Rtd–
(

R,

v,sinh2R,d 1

1

Rocoth Rod2 + : coth2R,

Introducing the functions

F*(a) = – C’+Loprii,(a,o)= Yq(%o)+ aqw0)
—— — WOB.

The relation between F1 and F2 and Ul and U2 can now be

written

itieoX1(a)F1(a) =U1(a)

x*(a) F*(a) = itipoU2(a). (11)

Similar relations have been used for the analysis of shielded

microstrip lines on anisotropic substrates [8]. Functions for

the microstrip lines are the limiting cases of, (10) when

d2 = O.

Equations (11) represent the independent excitation of

LSM- and LSE-modes in the structure by the currents

flowing on the conductors of the slot-line. Thus, if U2 = O

then B = O, F2 = O, i.e., Hz= O and the field is purely LSM.

Similarly, when U1 = O, the field is LSE and fi~ = O. x, and

x 2 are the inverse Green’s functions of these field types. In
the shielded structure when both dl and dz are finite, x,

and x z are mesomorphic even functions of a, having pole

singularities at points & a. and ~ ~~, and zeroes at * v.

and * u. (the imaginary parts of a., ~., v., and U. are

assumed to be positive), respectively. The propagation

constants of LSM- and LSE-modes in the dielectric slab

loaded structure are the zeros of x, and x*, when y = O

and will be denoted by ;. and tin. Due to the fact that a

and v are always combined in the arguments of x, and x ~

in the form a2 + y 2, the zeros for arbitrary y are related to

;~ and F. by

v2=~2
nn –Y* q2=T-Y2.

When y = O, these modes propagate laterally in the direc-

tions of Ax. When y # O, they have a longitudinal compo-

nent of propagation constant given by y and a transverse

component given by v. and U.. In the slot-line, the field in

the gap region can be represented as a combination of

these modes.

Similarly, the poles of x, and X2 are the roots of the
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equations

coth Rvdz coth2Rzde _

RO ‘e’ R, ‘0
! for a.

ROtanh Rodl = O
J
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where U; and Uz– are regular on the lower half-plane

Ima <0. These expressions take into account the symmetry

of the current components .lX and J, with respect to the gap

center.

3) The asymptotic behavior of F,, F9, U,, and UT when

a + co’ is determined by the singularities of the fileds and

ROcoth Rod2 + ~ coih2R,d = O
1

currents on the gap edges and can be shown to be
}.r

# tanh ROdl =0
o

When y = O, they will be denoted by

related to a. and ~~ by

cY:=E; -y* p:=%

The roots and poles P., ii,, ii., and ~~ are functions of

frequency and the parameters of the line, but not of y. The

poles of x, and X2 coincide with the propagation constants
of the waveguide modes in the regions outside the slot,

between the planar line conductors, and the shields. The

fields in these regions can evidently be represented as a

combination of these modes.

The slot-line problem can finally be formulated in the

Fourier transform domain as follows. It is required to

determine the analytic functions F,, F2, U1, and U2 satisfy-

ing the relations (11 ) and are such that the tangential

components of the fields and the surface currents satisfy

the boundary conditions on the gap and line conductors.

Tangential electric field must vanish on the planar conduc-

tors while the currents vanish on the gap. Both electric field

and current components must satisfy the edge conditions

[9].

III. GUIDED WAVE PROPAGATION IN SLOT-LINES

To determine the fields and propagation constants of the

modes guided by the slot-line, the method developed in [7]

will be followed. Boundary and edge conditions on the

tangential field and current components are written as

follows.

1) On the planar conductors

Ex(x,o)=o Ey(x, o)=o, forx<O X> W’.

2) On the gap

Jx(x)=o ;,(X)=O, for O<x<W.

3) At the edge x + O we have

EX(X, O)- X-’l* Ev(x, o)-x’/2

.lx(x) -x’/* .Jy(x)-x-’/2.

The same conditions apply on the other edge x - W.

Boundary conditions 1, 2, and 3 will reflect on the proper-

ties of the functions F,, F2, U,, and U2 as follows.

1) F1 and F2 are entire functions which grow at infinity

as e’aw.

2) Functions U1 and U2 can be represented in the form

U1(a)=U:(a) –e’”wU; (–a)

U2(a) = U2-(a)+ e’”wUj(– a)

F1(a)-a1/2 Fz(a)-a-1\2

u,(cY)-a-’/* u2(a)- (X112.

The slot-line problem thus reduces to the solutions of the

functional equations

ZtiEOXl(a)F, (a) = U~(a)– e’”wU1(– a)

&x2(~)F2(~)=uJ(a)+elawU; (–a). (12)

Equations (12) can be reduced to systems of simultaneous

algebraic equations through the application of modified

Wiener–Hopf technique [7], [9]. Representing functions x,

and X2 as products of functions regular and having no

roots in the upper and lower half planes

xl(w) =x; (~)x; (~) x2(~) =x:(~) x;(~)

then dividing (12) by x; and xi and separating the minus

and plus terms of the resulting “equations we obtain

[ 1U;(–a) -
*U~(a)– e’aw _

xl

=&u;(a) _~el”nw_u;(-”n)
=P

xl n xi(~n)(~–~n)

[
& Uz–(a)+ e’aw

U;(–a)
x2 x; 1

= *Uj(a)+ ~e’””wn
U;(–un)

‘Qn x2(%) (~- fJ.)
(13)

where P and Q are some constants. Equations (13) account

for the asymptotic behavior of the functions and thus

satisfy the edge conditions. The unknown coefficients U1–

(– v.) and U; ( – u.) can be determined by setting a = – v.

in the first equation and a = – u,, in the second, arriving at

the following sets of algebraic equations:

A.+ :
[m

—An=l, ~=l,z,...
~=, Vm+vn

B.+ ~ A B~=l,
~=, um+un

~=l,z,... (14)

where

PA. =
U;(–vn) U;(–un)

QBfl = ~—
X;(–vn) X*(–fJ. )

~n=X;(– ‘.) eiy,,w

Xi(vn)

_{n=x2(–%)elanw

x;(%)
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Functions U, and Uz are expressed in terms of A and B as

The propagation constant y is determined from the char-

acteristics of the transforms of EX and fip. The inverse

linear transformation from F, and F2 to -fiX and ~Y will

introduce pole singularities in fiX and EV at values of

a = ~ iy, unless the functions F1 and Fz satisfy the condi-

tions

F1(*iy)*iF2(~iy)=0

which can be shown to be equivalent to

u;(Yiy)*iu2- (*iy)=o. (16)

Equation (16) represents a set of homogeneous equations

for the determination of the unknown constants P and Q. y

can be determined as the root of the determinant.

Defining the impedance of the slot-line as the ratio of

the integral of the x-component of the electric field over

the gap to the total longitudinal current flowing on one of

the line conductors, it can be readily calculated through the

F and

where

U functions. Thus

u;(o) =yJ,- (o)= ;/: {,(x)~x= *1
03

FZ(0) = y~X(0) = 1 ~wEX(x, O) dX = & t“
2Tr (j

V is the quasi-static gap voltage and 1 is the total

longitudinal current on the conductor x <O. The imped-

ance is therefore given by

~ = F,(O) _ 2i@f10U. (0)

0 u;(o) – X,(o)u;(o) “

IV. CHARACTERISTICS OF PROPAGATION IN

SLOT-LINES AND NUMERICAL RESULTS

A considerable amount of information can be gained

about the general characteristics of propagation in slot-lines

by studying the zero-pole behavior of inverse Green’s
functions. We notice that although the summations in (15)

have poles at the points a = v. and a = o., functions U;

and U2– are regular at these points since the zeroes of x;

and x* will cancel the poles. Functions U1– and U2– have

their poles at the points a = a. and a = ~~, respectively,

coinciding with the poles of x; and x;. This means that,

as expected, the fields in the regions outside the gap x <O,

x > W is a superposition of waveguide modes having trans-
verse propagation constants a. and ~~. For guided (unat-

tenuated) propagation, all these modes should be evanes-

cent, i.e., a. and ~. must be purely imaginary, otherwise

power will be radiated in the broadside directions. The

properties of x, and Xz are such that the squares of the

poles and zeros, for y = O, are real and can be arranged in

the sequences

F
eff

I

Limiting values of ~eff

Fr ‘z

\ M L\ub\l!LU.\ L\ UU-Uu u L!l J-L

Allowed region

Radiation region

‘“”L
a frequency

(a)

“.L——————
0. frequency

(b)

Fig. 2. (a) Region of aflowed values of E=ff for slot-fine. (b) Effect of dz

on the characteristics of the lowest order waveguide mode and allowed

region.

\

—m< . . . –2<–2<–2<i; <a, .v, .ao

—cQ< . . . <~;<6;Gp;Gc7;. (17)

Depending on the the frequency, these poles and roots may

be negative or positive. At higher frequencies, larger num-

bers of these quantities are positive, indicating that the

corresponding modes are above their cutoff. In order that

all waveguide modes would be evanescent, i.e., a. and ~~

are imaginary, the propagation constant y must satisfy the

inequalities

yz>ii: yz>py.

It can be shown that the dominant mode in the dielectric

loaded guide between the slot-line conductors and the

lower shield corresponds to the pole a., i.e.

iig>~;>{ii:,~nz }

On the other hand, from physical reasoning, the propaga-

tion constant must be smaller than that of plane-wave in

the dielectric k = kom. Therefore, the possible values of
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Fig. 3. Open (unshielded) slot-line dispersion characteristics. —

present theory, 0 results of [2] and [4].

y for guided propagation lie in the range

EO<y<kOG.

In terms of the effective dielectric constants we have

o<
‘eff \ ‘eff < prEz (18)

where

ii’
~:ff = + Y’

eeff =7.
k. k.

e~~frepresents the effective dielectric constant of the domi-

nant waveguide mode corresponding to aO. Inequality (18)

represents the region of the allowed values of eeff for the

slot-line on the dispersion diagram eeff – ~ as shown in Fig.

2(a). Typical dispersion characteristics of the mode a. for

different distances of the lower shield dz are shown on Fig.

2(b). If the lower shield is absent d2 = co, the mode effec-

tive dielectric constant is always unity at ~ = O, the mode

propagates with the velocity of light in free space, and

tends to p,c, at high frequencies f + w. As the distance d2

becomes smaller, the zero-frequency value of e~ff increases,

approaching P,EZ as d2 + O. Therefore, a conclusion can be

drawn, that the propagation in slot-lines is significantly

affected by the lower shield. For a given slot width, if the

lower shield is too near then the allowed region is so

narrow that the guided propagation is impossible. Alterna-

tively, for a fixed value of d2, the slot-line can support

guided waves only for gap widths smaller than some maxi-

mum value W~, determined by the properties of the sub-

strate and the distances of the shields. The effect of the

upper shield is somewhat different but it leads to similar
results. It determines the cutoff characteristics and lowers

the effective dielectric constant of the slot-line, especially

for relatively wide-gap lines.

Relations (17) and (18) also imply that, except possibly
O1, all pa and u. are imaginary in the guided propagation

7.0

600

5.0

4.0

3.0

2.0

E
eff /

/

‘:1/2 d=0.5

I .0

2.0

4.0

f GHz

1 t II , I
o. 15 30 45

Fig. 4. High-frequency characteristics of shielded slot-line on Alumina.
~,=9,6, ~,=1,0, 2d=l.O mm, and dl/d=:dz/d=lO.(). – – – –

characteristics of lowest order waveguide mode outside the gap region.

200

100

1

Ohms

1/ f GHz

W/2d=4. O

2.0

1.0

0.5

0“~—1. 45

Fig. 5, Impedance of the shielded slot-line on Alumina. e,= 9.6, p, = 1.0,

and dl/d= d2/d= 10.().

region. The sets of equations in (14) are highly convergent

due to the presence of the exponential terms in the summa-

tions, especially for relatively wide slots. This explains the

numerical efficiency of the method, which is common to

most Wiener—Hopf type problems.

In order to compare the results of the present theory

with published results (which are available only for un-

shielded lines), the dispersion characteristics of the slot-line

on a substrate with e, = 16 were calculated and are shown

in Fig. 3, where the results of [2] and [4], which are nearly

coincident, are also shown. The agreement is seen to be

quite good.

To reveal the typical high-frequeney performance, the

characteristics of a slot-line configuration with symmetri-

cally located shields dl = d2 have been computed and the

results are show in Figs. 4 and 5. The substrate is 1.O-mm-

thick isotropic material with t,= 9.6 (Alumina). The results

show two important characteristics. At high frequency, the
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effective dielectric constant tends to be independent of the

line width, and the dispersion curves intersect with the

characteristics of the dominant waveguide mode at a cer-

tain frequency, beyond which the guided propagation be-

comes impossible. At frequencies higher than this, the line

radiates in the broadside directions. This frequency, which

is independent of the slot width, limits the high-frequency

response of the line. The slot-line is therefore usable over a

range of frequencies limited by the cutoff at the low-

frequency end and the high-frequency radiation limit.

Difficulties are encountered when the method is applied

to slot-lines with narrow gaps W/2d <1 and/or large

distances of the shields d, /d >10 and dz /d >10. The

computation time becomes excessive in both cases as the

exponential factors do not decay sufficiently rapidly and

therefore a larger number of equations is required to

achieve reasonable accuracy. Very narrow slot-lines there-

fore may be calculated using other methods (e.g., Cohn’s

method). In case of large shield spacing, the method is still

applicable taking into consideration the fact that at fre-

quencies far from the cutoff the shields will have negligible

effect on the line characteristics if the distances d, and dz

are in excess of some minimum values d ,~ and dz~. This is
due to the exponential decay of the slow guided wave away

from the plane of the line. If the actual distances are larger,

then they can be set to these minimum distances without

appreciable change in the computed characteristics which

will be those of an open, unshielded line.

To obtain a rough estimate for dl~ and dz~, we note

that from elementary considerations the effect of upper

and lower shields will be negligible when

Then, dl~ and dz~ are the values of d, and dz which

reasonable satisfy these inequalities. Practically, however,

these values are checked by performing additional calcula-

tions at larger values of d] and dz making sure that the

change is insignificant. Evidently, this is not applicable in

the vicinity of the cutoff when S,ff ~ 1. The results of Fig. 3
for the unshielded slot-line were obtained in this way.
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