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Millimeter-Wave PerfOImance of Shielded
Slot-Lines

ABDEL-MONIEM A. EL-SHERBINY, MEMBER, 1IEEE

Abstract —The high frequency characteristics of shielded slot-lines are
investigated using a modified Wiener—Hopf technique. The analysis in-
cludes the case of uniaxially anisotropic substrates when the principal axis
is directed normal to the substrate. The obtained solution is especially
useful at higher frequencies where other methods tend to be less effective.
Numerical results are given for lines on high dielectric constant substrates
over the full usable frequency range. It is shown that lines can be used as
transmission elements up to a certain limiting frequency beyond which they
will radiate. Physical aspects of the propagation in slot-lines are discussed
and the effect of the shields on the properties of the guided modes is
explained.

I. INTRODUCTION

SLOT-LINES are attracting increasing interest as a
transmission element in integrated circuits at higher
microwave and millimeter-wave frequencies. Since their
introduction by Cohn and others [1], {2], they have been
investigated by a number of authors. At lower microwave
frequencies, slot-lines were not much used because of the
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availability of other efficient and easy-to-calculate trans-
mission lines. At higher frequencies, however, as microstrip
lines and waveguides become inadequate for some applica-
tions and alternatives are searched, the slot-line becomes a
promising element in many respects. The waveguide-housed
counterparts, unilateral fin-lines, have been successfully
used for many millimeter-wave applications. The slot-line
as an open structure was felt to be susceptible to excessive
radiation at the discontinuities and to cross-coupling. At
higher frequencies, shielded slot-lines may be as efficient as
fin-lines and are much easier to integrate. One of the
important factors interfering with the application of slot-
lines is the lack of data on its performance at higher
‘frequencies. Being inherently non-TEM line, it is much
more difficult to calculate, compared to microstrip lines or
fin-lines. The latter are frequently treated as ridged rectan-
gular waveguides.

The results of [1], [2] are based on waveguide iris imped-
ance concepts and are sufficiently accurate for narrow
slot-lines. Various approaches were suggested for the full-
wave treatment of these lines and a fair amount of data is
now available [2]--{6]. However, the basic features of prop-
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agation in these lines, as well as their high-frequency
limitations, do not seem to be fully clarified yet. Moreover,
slot-lines on anisotropic substrates were not considered in
any detail in literature. Slot-lines on anisotropic substrates
have potential application as millimeter-wave transmission
media and in integrated optics.

The following analysis of shielded slot-lines is based on
the functional equations approach which was applied to
bilateral fin-lines and to microstrip lines on anisotropic
substrates [7], [8]. The main advantage of the method is its
superior numerical efficiency, especially at high frequen-
cies, and the physically identifiable quantities appearing in
the expressions for fields and currents, allowing a deeper
insight into the physics of the problem.

II. FORMULATION OF THE PROBLEM

The configuration of the shielded slot-line under consid-

eration is shown on Fig. 1. The slot-line with gap-width W

and semi-infinite thin conductors lies in the plane z=0
over a dielectric substrate which is assumed to be, in
general, uniaxially anisotropic with the principal axis in the
direction of z perpendicular to the plane of the substrate.
The thickness of the substrate is taken to be 24 and the
upper shield is located at a distance d, from the plane of
the line, while the lower shield is at distance d, from the
lower side of the substrate. The cartesian axes x, y, and z
are located as shown. Shields and slot-line are assumed to
be perfect conductors. The tensor permittivity of the sub-
strate material is written

g 0 0
§=¢g) 0 ¢ 0
0 0 e

and the magnetic permeability is pou,. &, and p, are the
permittivity and permeability of free space, respectively.
The dependence of the fields and currents on the time ¢
and the longitudinal coordinate y is given by e~ “@ =),
where w is the angular frequency and v is a real propaga-
tion constant. Fields and currents will. be represented
through their Fourier transforms

f(x,z) :f+oof(a, z)e "““*da

where f is any of the field or current components, f is its
Fourier transform, and « is a complex parameter. Field
components can be represented through E, and A, in the
dielectric regions I, I, and 11

OB E
K’ aZ - aL, Ty v
— wpop, H, =vE, + aE, (1)
OH, . .
I = oH, +vH,
wege, B, =vH + aHy. (2)

If the functions E, and H, are known, all other field
components can be determined from (1) and (2). Functions
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Fig. 1. Shielded slot-line configuration.

E, and H, satisfy the one dimensional wave equations

d? N
[d———x (a +vy?—kie, ur)]E 0
z
d? ~
[E—-(tﬁ%—yz—kge,p,,)]HZ:o (3)
where
k*=¢, /e, ki=we,p,.

A. Boundary Conditions

Continuity relations for the electric and magnetic fields
on the interfaces between different media together with
relations (1) and (2) lead to the following boundary condi-
tions for E, and H, and their derivatives.

1) On the shields E = Ey = 0; therefore

JA N o
9z |,y 0z z:-—Zd—dl—-
H(a,d)=H,(a,—2d—d,)=0. (4)

2) On the interfaces z =0 and z = —24d, the tangential
components of the electric field are continuous. For E_ and

H we have
9L _ L3
dz z:+0—-’€2 dz z=—0

1 aE] 8E~}
] — 2z 5
k2 0z |,— _p440 Oz =-2d—0 ( )

H,(a.+0)=p,H (e, —0)

pH(a,—2d +0)= H,(a, —2d —0). (6)
3) On the interface z = —2d, H, and Hy are continuous,
ie.,
3H. AH,
9z J.o—2q+0 92 |io—24-0
e, E(a,—2d+0).= E(a,—2d—0). (8)

4) Due to the presence of surface currents, J. (@) and
J (@) flowing on the slot-line conductors, fields H and H
are discontinuous and so are ¢, E,, and 9H, / 8z on the
plane z = 0. This leads to the followmg boundary condi-
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tions on the plane of the conductors:
weo| E(a, +0)— ¢, E,(a, —0)]
= —af(a)—v/(a)

B AN
! l aZ z=+0 aZ z==0

©)

where U, and U, are introduced as linear combinations of
J. and J; in the Fourier transform domain.

Expressions for E(a, z) and H,(a, z) in regions 1, II,
and III taking into account boundary conditions (4), (5),
(6), and (7) can be written as follows.

=v/(a)+ ‘va(“) =0,

Region I:
. _ cosh Ry(d,~z)
Efo,z)=—4 R,sinh Rod,
- __sinhRy(d, —z)
H(a,z)=B sinhRyd,
Region II: .
g - _c cosh R,z cosh R,(2d +z)
o 2)= “R_sinh2R,d ' ““ R_sinh2R.d
. D sinhR,z B sinhR,(2d +z)
H(a,z)=——— ——
p, sinh2R,d u, sinh2R.d
Region I111:
~ __coshRy(2d+d,+z)
Eaz)=C R,sinh R yd,
ﬁz(a,z)zDSinhR°(2d+d2+z).

sinh R,d,

A, B,C, D are some function of the parameter «
Ry :m
R,=|e®+y>—klp,e,

R,=ya*+y2—kip.e,.

Applying conditions (8), we obtain the following relations
between A and B and C and D:

D{R hRd+-& th2R,d —&———L——B
0Coth Rods n, ““] " u, sinh2R,d
coth R,d, coth2R, d,\ g, 1
C( R, % R ) R swhoRd
where
g, =\gE, d,=dx.

Finally, application of (9) and using the relations between
A, B, C, and D gives A and B in terms of U, and U,

—wpodx (@) =U,(a)

iBx,(a) =U(a) (10)

where
__cothRyd, N coth2 R, de _( e, )2
xi(e) = R, TR, R,sinh2R.d,
1
th R,d th2R_d
coth R, 2+£eco .d,
R, R,

R

x2(e) = Rocoth Rod, + -+ coth2R d ( i smh2R,d )

1

. = .
R,coth Ryd, + H—' coth2R,

r

Introducing the functions
| OF, i i
F,(a)=—15———‘ = —aFE(a,0)+vE (a,0)=i4
K 9z z=0
= wAuOAU‘rH:(a’O) = YEx(a70) + aE‘y(a’ O)
= —wpyB.

The relation between F| and F, and U, and U, can now be
written

iweox (@) Fi(a) =U\(a)
X2(@)Fy(a) = inOUz(a)- (11)

Similar relations have been used for the analysis of shielded
microstrip lines on anisotropic substrates [8]. Functions for
the microstrip lines are the limiting cases of (10) when
d,=0.

Equations (11) represent the independent excitation of
LSM- and LSE-modes in the structure by the currents
flowing on the conductors of the slot-line. Thus, if U, =0
then B=0, F, =0, ie, ﬁz =0 and the field is purely LSM.
Similarly, when U, =0, the field is LSE and E. = 0. x, and
X, are the inverse Green’s functions of these field types. In
the shielded structure when both d, and d, are finite, x,
and x, are meromorphic even functions of a, having pole
singularities at points *=a, and *=g,, and zeroes at *p,
and *o, (the imaginary parts of «,, 8,, »,, and o, are
assumed to be positive), respectively. The propagation
constants of LSM- and LSE-modes in the dielectric slab
loaded structure are the zeros of x, and x,, when y=0
and will be denoted by », and 5,. Due to the fact that a
and » are always combined in the arguments of x, and x,
in the form a? + y?, the zeros for arbitrary y are related to
v, and g, by

L
When y =0, these modes propagate laterally in the direc-
tions of == x. When y = 0, they have a longitudinal compo-
nent of propagation constant given by y and a transverse
component given by », and g,. In the slot-line, the field in
the gap region can be represented as a combination of
these modes.

Similarly, the poles of x, and x, are the roots of the
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equations
coth Ryd, coth2R.d,
R, e R, " Lor a,
Rytanh Ryd, =0

R .
Rycoth Ryd, + — coth2R,d =0
by
for §,.

1
7 tanh Rod, =0

When y=0, they will be denoted by &, and B, and are
related to a,, and 8, by

al=a2—vy?

Bi=B;—v*

The roots and poles #,, &,, &, and 8, are functions of
frequency and the parameters of the line, but not of v. The
poles of x, and x, coincide with the propagation constants
of the waveguide modes in the regions outside the slot,
between the planar liné conductors, and the shields. The
. fields in these regions can evidently be represented as a
combination of these modes.

The slot-line problem can finally be formulated in the
Fourier transform domain as follows. It is required to
determine the analytic functions F,, F,, U,, and U, satisfy-
ing the relations (11) and are such that the tangential
components of the fields and the surface currents satisfy
the boundary conditions on the gap and line conductors.
Tangential electric field must vanish on the planar conduc-
tors while the currents vanish on the gap. Both electric field
and current components must satisfy the edge conditions

[9].
1II. GUIDED WAVE PROPAGATION IN SLOT-LINES

To determine the fields and propagation constants of the
modes guided by the slot-line, the method developed in [7]
will be followed. Boundary and edge conditionis on the
tangential field and current components are written as
follows.

1) On the planar conductors

E(x,00=0  E/(x,0)=0, forx<0 x>W.
2) On the gap
J(x)=0 J(x)=0, forO<x<W.

3) At the edge x — 0 we have
E (x,0)~x"1/?
Jx)~x!'/?

E(x,0)~x'/?
—1/2
J(x)~x"1

The same conditions apply on the other edge x— W.
Boundary conditions 1, 2, and 3 will reflect on the proper-
ties of the functions F|, F,, U, and U, as follows.

1) F, and F, are entire functions which grow at infinity
as eV,

2) Functions U, and U, can be represented in the form

Ua) =07 (a) = e*"U; (~a)
Uy(a) =0, (a) + e Uy (— )
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where U] and U; are regular on the lower half-plane
Ima < 0. These expressions take into account the symmetry
of the current components J, and J, with respect to the gap
center. '

3) The asymptotic behavior of F,, F,, U,, and U, when
a— oo is determined by the singularities of the fileds and
currents on the gap edges and can be shown to be

F(a)~a/?* F(a)~a™'/?
Ula)~a™ 72 Ufa)~a'/?

The slot-line problem thus reduces to the solutions of the
functional equations

iwegx (@) Fi(a) =Ur (a)— e WUy (—a)

x2(a)F(a) =0y (a)+ e YUy (—a).  (12)
Equations (12) can be reduced to systems of simultaneous
algebraic equations through the application of modified
Wiener-Hopf téchnique [7], [9]. Representing functions x,
and X2 as products of functions regular and havmg no
roots in the upper and tower half planes

xile)=xi(a)xi (@)  xi(a)=x3(a)x; (a)

then dividing (12) by x| and x5 and separating the minus
and plus terms of the resulting equations we obtain

1wl |
—=U; (@) [e X, ]

iwpg

Xt
:;(—Ul (a)— Ee”W ————U‘ g(a") y=F
%U;(@%yw%;al]’
AR e Ayt
(13)

where P and Q are some constants. Equations (13) account
for the asymptotic behavior of the functions and thus
satisfy the edge conditions. The unknown coefficients U,
(—»,) and U, (— 0,) can be determined by setting a = —»,
in the first equation and a = — ¢, in the second, arriving at
the following sets of algebraic equations:

£ _ _
A, + 2: m+VnAm—1, n=1,2,---
B+ § dn B =1 n=1,2 (14)
n ey Omto, " ’ >
where
pa = Uim)  p Ui(o)
Xl (—Vn) XZ( on)
&n — Xl_~(_ Vn) ?iY"W __{n — X;—( n) em w
Xl (Vn) X2 (on)
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Functions U, and U, are expressed in terms of 4 and B as

Uf(a):le_(a){l—F i; ¢ Am}

5 S Bm}- (15)

m=1 m

U;(a>::Qx2<a>{1+

The propagation constant y is determined from the char-
acteristics of the transforms of E, and E,. The inverse

X
linear transformation from F, and F, to E, and Ey will
introduce pole singularities in E, and E, at values of
a= =iy, unless the functions F, and F, satisfy the condi-
tions

Fy(+iy)=iB(*iy) =0
which can be shown to be equivalent to

Uy (xiy)=il; (=iy) =0. (16)
Equation (16) represents a set of homogeneous equations
for the determination of the unknown constants P and Q. y

can be determined as the root of the determinant.
Defining the impedance of the slot-line as the ratio of
the integral of the x-component of the electric field over
the gap to the total longitudinal current flowing on one of

the line conductors, it can be readily calculated through the
F and U functions. Thus

_ ~ 0 Y
U (0 =1, (0= [" s(x)dx=5"1
o0
~ w
Fy(0)=vE (0)= % fo E(x,0)dx= g; 14

where V is the quasi-static gap voltage and I is the total
longitudinal current on the conductor x <0. The imped-
ance is therefore given by

_ F(0)  2iepyU; (0)

D70 x0T (0)

IV. CHARACTERISTICS OF PROPAGATION IN
SLOT-LINES AND NUMERICAL RESULTS

A considerable amount of information can be gained
about the general characteristics of propagation in slot-lines
by studying the zero-pole behavior of inverse Green’s
functions. We notice that although the summations in (15)
have poles at the points a =, and a=0,, functions U,
and U; are regular at these points since the zeroes of x|
and x, will cancel the poles. Functions U and U; have
their poles at the points a = e, and a=B,, respectively,
coinciding with the poles of x| and x,. This means that,
as expected, the fields in the regions outside the gap x <0,
x> W is a superposition of waveguide modes having trans-
verse propagation constants &, and 8,. For guided (unat-
tenuated) propagation, all these modes should be evanes-
cent, i.e., a, and B8, must be purely imaginary, otherwise
power will be radiated in the broadside directions. The
properties of x, and x, are such that the squares of the
poles and zeros, for y =0, are real and can be arranged in
the sequences
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Eeff

Limiting values of éeff

/Ur £ AUV NN A A A VY A A

Z

eff

Allowed region

Radiation region

Q frequency

Zerr

/OI‘EZ 2

0. frequency
b
Fig. 2. (a) Region of allowed values of ¢ for slot-line. (b) Effect of d,

on the characteristics of the lowest order waveguide mode and allowed
region.

—o<- - <PE<a<iri<al
—0< - <PI<ol<Pi<i? (17)

Depending on the the frequency, these poles and roots may
be negative or positive. At higher frequencies, larger num-
bers of these quantities are positive, indicating that the
corresponding modes are above their cutoff. In order that
all waveguide modes would be evanescent, ie., a, and S8,
are imaginary, the propagation constant y must satisfy the
inequalities
IR

It can be shown that the dominant mode in the dielectric
loaded guide between the slot-line conductors and the
lower shield corresponds to the pole «y, i.e.

x> pi>{az, p2).
On the other hand, from physical reasoning, the propaga-

tion constant must be smaller than that of plane-wave in
the dielectric k = k. /i€, . Therefore, the possible values of
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9.0 _  Zefr
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Er= 16
6.0 W/2d = 1.0

2d = 1.0 mm
5.0
40 4

f GHz
3.0 T T T T T T
640 9.0 12.0 15.0 18.0 21,0 2440
Fig. 3. Open (unshielded) slot-line dispersion characteristics.

present theory, © results of [2] and [4].
v for guided propagation lie in the range
&y <Y <kgyu,e, .
In terms of the effective dielectric constants we have

(18)

0
Eopp SEgpp SHLE,

where
—2 2
0o % Y
2 K2 Eett — K2
0 0

e represents the effective dielectric constant of the domi-
nant waveguide mode corresponding to «,. Inequality (18)
represents the region of the allowed values of e for the
slot-line on the dispersion diagram e, — f as shown in Fig.
2(a). Typical dispersion characteristics of the mode «, for
different distances of the lower shield d, are shown on Fig.
2(b). If the lower shield is absent d, = oo, the mode effec-
tive dielectric constant is always unity at f =0, the mode
propagates with the velocity of light in free space, and
tends to p,¢, at high frequencies f — co. As the distance d,
becomes smaller, the zero-frequency value of €2 increases,
approaching u ¢, as d, — 0. Therefore, a conclusion can be
drawn, that the propagation in slot-lines is significantly
affected by the lower shield. For a given slot width, if the
lower shield is too near then the allowed region is so
narrow that the guided propagation is impossible. Alterna-
tively, for a fixed value of d,, the slot-line can support
guided waves only for gap widths smaller than some maxi-
mum value W, , determined by the properties of the sub-
strate and the distances of the shields. The effect of the
upper shield is somewhat different but it leads to similar
results. It determines the cutoff characteristics and lowers
the effective dielectric constant of the slot-line, especially
for relatively wide-gap lines.

Relations (17) and (18) also imply that, except possibly
0,, all », and ¢, are imaginary in the guided propagation
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Fig. 4. High-frequency characteristics of shielded slot-line on Alumina.
e, =96, p,=10, 2d=10 mm, and d,/d=d,/d=100. - - - -
characteristics of lowest order waveguide mode outside the gap region.

Chms

200 -
s ’ — W/2d=4.0
. — 2,0

00 A4 | /o~ 1.0
4 0.5
.
T f GHz

0. LA S B M B A A LA e s |
0. 15 30 45
Fig. 5. Impedance of the shiclded slot-line on Alumina. &, = 9.6, p, = 1.0,

andd, /d=d,/d=100.

region. The sets of equations in (14) are highly convergent
due to the presence of the exponential terms in the summa-
tions, especially for relatively wide slots. This explains the
numerical efficiency of the method, which is common to
most Wiener— Hopf type problems.

In order to compare the results of the present theory
with published results (which are available only for un-
shielded lines), the dispersion characteristics of the slot-line
on a substrate with ¢, =16 were calculated and are shown
in Fig. 3, where the results of [2] and [4], which are nearly
coincident, are also shown. The agreement is seen to be
quite good.

To reveal the typical high-frequency performance, the
characteristics of a slot-line configuration with symmetri-
cally located shields d, = d, have been computed and the
results are show in Figs. 4 and 5. The substrate is 1.0-mm-
thick isotropic material with &, = 9.6 (Alumina). The results
show two important characteristics. At high frequency, the
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effective dielectric constant tends to be independent of the
line width, and the dispersion curves intersect with the
characteristics of the dominant waveguide mode at a cer-
tain frequency, beyond which the guided propagation be-
comes impossible. At frequencies higher than this, the line
radiates in the broadside directions. This frequency, which
is independent of the slot width, limits the high-frequency
response of the line. The slot-line is therefore usable over a
range of frequencies limited by the cutoff at the low-
frequency end and the high-frequency radiation limit.

Difficulties are encountered when the method is applied
to slot-lines with narrow gaps W/2d <1 and/or large
distances of the shields d,/d >10 and d,/d >10. The
computation time becomes excessive in both cases as the
exponential factors do not decay sufficiently rapidly and
therefore a larger number of equations is required to
achieve reasonable accuracy. Very narrow slot-lines there-
fore may be calculated using other methods (e.g., Cohn’s
method). In case of large shield spacing, the method is still
applicable taking into consideration the fact that at fre-
quencies far from the cutoff the shields will have negligible
effect on the line characteristics if the distances d, and d,
are in excess of some minimum values d,,, and d,,,,. This is
due to the exponential decay of the slow guided wave away
from the plane of the line. If the actual distances are larger,
then they can be set to these minimum distances without
appreciable change in the computed characteristics which
will be those of an open, unshielded line.

To obtain a rough estimate for d,,, and d,,,, we note
that from elementary considerations the effect of upper
and lower shields will be negligible when

e @/ Ndifeer—1 1 o=@/ Ndafees —1 « ] ko= %}\z i
Then, d,,, and d,,, are the values of d, and &, which
reasonable satisfy these inequalities. Practically, however,
these values are checked by performing additional calcula-
tions at larger values of d, and d, making sure that the
change is insignificant. Evidently, this is not applicable in
the vicinity of the cutoff when ¢ < 1. The results of Fig. 3
for the unshielded slot-line were obtained in this way.
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